
J .  Fluid Mech. (1977), vol. 82, part 3,  pp. 497-506 

Printed in Great Britain 
497 

Stability of time-periodic flows in a circular pipe 
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The stability of time-periodic flows in a circular pipe is investigated. The disturbance 
is assumed to be axially symmetric and to have a small amplitude, so that the govern- 
ing differential equation is linear. Calculations are carried out for the first ten modes 
for a range of values of the frequency of the primary motion, of the wavenumber of the 
disturbance, and of the Reynolds number of the primary flow. In  the ranges of the 
parameters for which the calculations have been carried out, the flows are found to be 
stable and, as for Stokes flowb (von Kerczek & Davis 1974), it is conjectured that the 
flows under study here are stable for all frequencies and all Reynolds numbers. 

1. Introduction 
We consider the flow of a Newtonian fluid with constant density and viscosity 

through a rigid pipe of circular cross-section, and study its stability against axi- 
symmetric disturbances. Furthermore, the 'flow is assumed to be time-periodic and 
without a steady (Poiseuille) component. 

In  recent years a good deal of studies of the stability of time-dependent flows have 
been carried out. A review of them has been given by Davis (1976). Of particular 
relevance to this paper are two excellent papers: one by Grosch & Salwen (1968) 
on the stability of steady and time-dependent flows between two parallel plates and one 
by von Kerczeck & Davis (1974) on the stability of Stokes flows, i.e. flows induced by 
an oscillating plate with a viscous fluid above it. Our results, which lead to the con- 
clusion of stability of the flows considered here, agree, in a broad sense, with both 
these papers. A detailed discussion of our results and their relation to these papers 
will be given in the last section of this paper. 

2. The primary flow 
We shall consider an axisymmetric flow of a fluid of constant densityp and viscosity 

p in a circular pipe of radius a. The flow is due to a time-periodic pressure gradient 
and has no steady part a t  all. The pressure gradient is Kexp (iw'r),  in which o' is the 
circular frequency, 7 is the time and K is the amplitude of the pressure gradient. The 
longitudinal velocity w produced by this pressure gradient is then governed by the 

aw K . + V( $ + tg), equation 
- = -eaw'r 

P 

in which v is the kinematic viscosity and r is the f i s t  of the cylindrical co-ordinates 
(r,  0, z) ,  the z axis being the axis of the pipe. 
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We shall use as the velocity scale the quantity V defined by 

V 2  = Kalp, 

and the dimensionless quantities defined by 

t = Vr/a, 6 = r/a, W = w/V, wt = 07’. (3) 

The Reynolds number is given by R = Valv. 

W = &tW l ( E ) ,  The solution of (1) is 

where 

in which p = (-iwR)*. 

It is evident that the solution given by (6) satisfies the 

Wl(0)  = 0, K ( 1 )  = 0. 

(4) 

( 5 )  

(6) 

(7) 

boundary conditions 

(8) 

After (6) has been substituted into ( 5 ) ,  the real part is taken to be the solution for W. 
For high values of wR ( =  w’a2/v), the solution for W given by ( 5 )  and (6) is nearly 

constant except near the pipe boundary, where E = 1, and the behaviour is very much 
the same as for the two-dimensional case, for which the solution is, for large p and 
near the wall, 

W = { 1 - exp [ - (&R)* (1 - i )  (1 - r)]), (9) zw 

where 7 = y/a, y corresponding to r and a being the half-width of the two-dimensional 
channel. One can see from (9) that for one ‘wave’ in W the change in 7 is approxi- 
mately 2*np-l, but in that distance W has attenuated by the factor exp ( -  2n), or 
less than 0.002. Thus for large fl  only one ‘wave’ in W is discernible, owing to the 
intense attenuation. Even for small values of p, for which (9) needs to be replaced by 

only one or two waves in W are discernible. 

3. Formulation of the stability problem 

function $ used by Synge (1938), in terms of which 
To ensure the satisfaction of the equation of continuity, we shall adopt the stream 

u = -$*, w = r-l(r$),., (11) 

where u and w are the components of velocity in the directions of increasing r and z, 
respectively, and subscripts indicate partial differentiation. The sign convention in 
(1 1) is opposite to Synge’s, but that is insignificant. 

The equation in $ is obtained by eliminating the pressure p between the Navier- 
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Stokes equations for axisymmetric swirl-free flows : 

where 

Du 
Dt par  

Dt p az 
- --- -- ap f vv2w, 

Dw 

~a a _ -  Dt - jj+u-+w- ar iz¶\ 

(131 

and the body force is not explicitly present since there is no free surface and the 
density is constant, so that we can consider p to be the difference between the total 
pressure and the hydrostatic pressure. The result (Synge 1938, p. 234) of the elimina- 
tion of p is, upon the use of (1 l), 

D u  

where L, = V2- l/r2. (16) 

@ = T+V, (17) 

We now express + as the sum of its primary part T and its perturbation part v: 

so that, V W being the dimensional velocity for the primary flow, 

in which u' and w' are the perturbation velocity components. Next we substitute (17) 
and (18) into (15), filter out the primary flow and retain only the first-order terms in 
$'. Finally, after putting 

where z is now dimensionless (in units of a) ,  and writing the equation in dimensionless 
form, we obtain 

(19) $' = # ( E l  exp (i@, 

(20) 

where the primes on W mean a/aE and 

a 2  i a  i 

aE2 5% P 
L = --+ _ _ _ _ _  a 2 .  

The boundary conditions are 

#(1) = 0 = #'(l), # ( O )  = 0 = # " ( O ) .  (211, (22) 
Conditions (21) are the no-slip conditions at  the pipe wall. The condition that w' be 
finite at  the centre of the pipe gives rise to # ( O )  = 0. The condition that 

aw'lar = 0 at r = 0 

gives rise to 

and this, upon requiring that be regular near = 0, gives rise to #"(O)  = 0. 
17-2 
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Equations (20)-(22) constitute the differential system governing stability. Since W 
is periodic in t ,  obviously Floquet theory is needed. This has been much used in the 
theory of stability of time-periodic flows (see, for instance, Yih & Li i972). Here, 
however, we shall replace (20) by a system of algebraic equations with constant or 
time-periodic coefficients, and proceed to find the characteristic values A, which are 
the magnification factors of 9 for ‘pure’ modes after one period of the primary flow. 
Numerical analysis is used here, not the Galerkin method. 

0 = (0, ..., o)T, a zero n-column, \ 

c, = (Q,O, ..., o)T, 

r, = (0, 0, . . ., 0) ,  

I = (&, 51, -.., Cn+l)T, 

an n-column, 

c,+~ = (0, . .., 0 , 2  + l/n)T, 

rn+, = (0, .. ., 0, l),  

an n-column, 

an n-row, 

an n-row, 

an (n+2)-column, 

+ = (q51, #,, .. ., +n)T, an n-column. 1 

4. Algebraic formulation 
The fourth-order differential equation (20) can be rewritten in terms of two second- 

$ (26) 

{ =  L$. 

With the discrete representations $i(t) = $(ti, t )  and &(t)  = {(ti, t ) ,  a hite-difference 
approximation of (23) in matrix notation has the following form, with [0 101 denoting 
a bordered matrix with a column of n zeros on the left and on the right of I : 
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The system (24) has two more unknowns than the numbers of equations because no 
boundary conditions are applied to the variables ti. The' system (25) has two more 
equations than the number of unknowns because the four boundary conditions in 
(2 1 ) and (22) have been applied. 

Substituting (25) into (24)) we obtain 

A d  = ( 6 - i D ) + ,  (27) 

where B = (Rh2)-l (AA + c,+~ r,,,) 

is a five-diagonal matrix and D = a(D, A - h2D,) 

is a tridiagonal matrix. Since A is a negative-definite matrix, we may invert A to 
obtain a standard form of a system of first-order ordinary differential equations at the 
expense of a dense coefficient matrix. Instead, we shall preserve the sparsity of the 
matrices and deal directly with the system (27). 

A and B are real constant matrices containing parameters R and a, while D is a 
real variable matrix which is periodic in time with period 27r/w, i.e. 

D ( t + 2 ~ / w )  = D(t). (28) 

From the Floquet theory, the solution of (27) is quasi-periodic such that 

#(t + 2n/w) = A m ,  (29) 

where h is a characteristic value of the system (27) called the Floquet parameter. 
Even if A is a multiple characteristic value, (29) is still true for one of the characteristic 
functions belonging to it, although other characteristic functions belonging to it 
contain polynomial factors. But these factors are always overshadowed by the 
exponential time factor exp(,ut), with exp (27rp/w) = A, provided /A1 < 1. Hence 
IAl = 1 will always give the stability boundary. 

The system (27) has n linearly independent fundamental solutions x , ( t ) ,  i = 1,2, . . ., n, 
each of which satisfies the differential equation 

Ai, = ( B - i D ) z i  (30) 

and the initial condition sz,(O) = e,, (31) 

where e, is the unit vector along the ith co-ordinate of the Euclidean n-space. In  
matrix notation, the fundamental solutions satisfy 

A Z  = ( B - i D ) Z ,  Z(0) = I, (32) 

where Z is a n x n matrix whose columns are z,, z2, . . . , 2,. 

linear combination of the fundamental solutions : 
Let the solution of (32) be Z(t). Any particular solution of (27) can be expressed as a 

+(t) = m a ,  
where a is a constant vector. 

Using (29) and (33), we can obtain 

(33) 

Z(t + 27r/o) a = hZ(t)  a. (34) 
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Equation (34) must be satisfied for all t .  Selecting t = 0, since the cycle may be started 
at  any time, we have an algebraic eigenvalue problem 

[ Z ( 2 n / w )  - A l l  a = 0, (35) 

for which the Floquet parameters are the eigenvalues of the matrix Z ( 2 n / w ) ,  which 
determine the stability of the solution +(t )  of (27). The solution is stable if I;\ 1 < 1 
and grows with time if J A l  > 1.  For the eigenvalues of (35) it is necessary to have first 
the matrix Z(2n/o), which can be obtained by numerically integrating (32) over one 
period. Such a procedure can be quite costly since we need to explore the three- 
dimensional parameter space of R, 01 and w .  The cost can be greatly reduced if the 
sparsity of the matrices in (32) is taken into consideration in the construction of a 
numerical algorithm. Further economy may be realized by use of the half-period 
property of D ( t )  that 

This cuts the time domain of integration by half. Both improvements will no doubt 
reduce round-off errors owing to the smaller number of operations needed for a given 
mesh size and time-increment size. 

D(t  + T / W )  = - D ( t ) .  (36) 

5. Numerical method 
A simple integration scheme is used for (32) to preserve the sparsity of the matrices 

A, 6 and D .  Let ZCk) = Z(kAt ) ,  where k is an integer and At is the time increment 
chosen. Equation (32) may be approximated by central differences, so that 

(At)-l A(Z("+l) - Z W )  = ( - iD("+#) $(ZCn+O + ZC")), (37) 

where D("+*) is evaluated at  ( n + $ ) A t  and Z ( ( n + & ) A t )  is taken as the average of 
Z("+l) and Z("). Rearranging (36), we have 

(38) 

Since the matrices involved in (38) are a t  most five-diagonal, the equations can be 
easily solved for n = 0,1 ,2 ,  ..., with Z(O) = 1. Let NAt = n/w. We can solve (38) N 
times to obtain ZcN) = Z(n /w) .  From (36), we can establish that 

(A - At 6 + iAtD("+*)) Z("+l) = (A + At B - iAtDcn+*)) Z("). 

Z(2n /w)  = Z(n/w)  Z * ( n / w ) ,  

where the asterisk denotes the conjugate of the complex matrix. 
Since we are most interested in the first few eigenvalues of Z(2nlw) starting from 

that of smallest modulus, the Lanczos algorithm (Golub 1973) may best suit the 
purpose. If the dimension of Z is modest, the QZ algorithm (Moler & Stewart 1973) 
can be used, although the QZ algorithm gives the entire set of eigenvalues of Z(2nlw).  
The QZ program is morereadily available than theLanczos programinmost computing- 
centre libraries. For the computations in this paper the QZ algorithm was used. 
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6. Results, conclusion and discussion 
Results for ten modes were obtained for three frequencies. In  figures 1 (a),  ( b )  and 

(c) the value of w is 1, 7.5 and 15, respectively. For each frequency, the results for the 
first three modest and for three wavenumbers are presented up to a Reynolds number 
of 2000. In  each figure ( A t ,  the absolute value of the characteristic value, is plotted 
against the Reynolds number R. 

It can be seen in all three figures that IAl < 1 and therefore the flows are stable for 
all three modes and for all three wavenumbers, up to the maximum Reynolds number 
for which the calculations have been carried out. It is evident from the tendency of 
the curves that 1 A1 approaches unity as R approaches infinity. We therefore conjecture, 
as von Kerczek & Davis (1974) did for Stokes flows, that the flows considered here are 
stable for all Reynolds numbers and all frequencies of the primary flow and all 
wavenumbers of the axisymmetric disturbance. 

Indeed, as mentioned in 3 2, the flow becomes increasingly like two-dimensional 
flows as R becomes larger and larger. The W given by the real part of (9) has two 
parts: one independent of R and the other dependent on R. The part W, dependent on 
R is, upon writing 7' for 1-7, exactly the solution for Stokes flows. The part 
independent of R is just - o-l sin wt. If we multiply (20) by exp [ - o-l sin ot] and 
write q51 = exp [ - w-1 sin ot] 4, 
then, remembering that for large values of wR 

the resulting equation is 

upon replacing L by V2 (since oR is large and r-lalar and -r-2 can be neglected in 
comparison with a2/ar2 when these are applied to W, or In  (39) 

v2 = a2/az2 + a 2 / a p ,  

with z and 7' both dimensionless, 7' being measured from either of the solid boundaries. 
Thus the conjecture of von Kerczek & Davis that Stokes flows are stable at  high 
Reynolds numbers and our conjecture that time-periodic flows in a circular pipe 
(with no steady-flow component) are stable at high Reynolds numbers stand or fall 
together. We believe in the conjecture of von Kerczek & Davis, and therefore in ours. 

Grosch & Salwen (1968) found that for plane Poiseuille flows with both a steady 
and a time-periodic velocity the time-periodic part stabilizes the flow (their figure 13). 
If we assume that the trend of their figure 13 continues, then when there is only the 
time-periodic part and no steady part of the primary flow at all the flow must be stable. 
This conjecture agrees with our conclusion here, as it should, since at  high Reynolds 
numbers our results should agree with theirs if their flow has no steady part, as has 
been discussed in the last paragraph in connexion with Stokes flows. 

This work has been supported by the National Science Foundation and the Office 
of Naval Research. 

t The higher modes are increasingly stable. 
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